Background: Although most circadian clock components are conserved between Drosophila and mammals, the roles assigned to the CRYPTOCHROME (CRY) proteins are very different: Drosophila CRY functions as a circadian photoreceptor, whereas mammalian CRY proteins (mCRY1 and 2) are transcriptional repressors essential for molecular clock oscillations.
Results: Here we demonstrate that Drosophila CRY also functions as a transcriptional repressor. We found that RNA levels of genes directly activated by the transcription factors CLOCK (CLK) and CYCLE (CYC) are derepressed in cry(b) mutant eyes. Conversely, while overexpression of CRY and PERIOD (PER) in the eye repressed CLK/CYC activity, neither PER nor CRY repressed individually. Drosophila CRY also repressed CLK/CYC activity in cell culture. Repression by CRY appears confined to peripheral clocks, since neither cry(b) mutants nor overexpression of PER and CRY together in pacemaker neurons significantly affected molecular or behavioral rhythms. Increasing CLK/CYC activity by removing two repressors, PER and CRY, led to ectopic expression of the timeless clock gene, similar to overexpression of Clk itself.
Conclusions: Drosophila CRY functions as a transcriptional repressor required for the oscillation of peripheral circadian clocks and for the correct specification of clock cells.