Background: Multilineage developmental capacity of the CD34+ cells, especially into cardiomyocytes and smooth muscle cells (SMCs), is still controversial. In the present study we performed a series of experiments to prove our hypothesis that vasculogenesis and cardiomyogenesis after myocardial infarction (MI) may be dose-dependently enhanced after CD34+ cell transplantation.
Methods and results: Peripheral blood CD34+ cells were isolated from total mononuclear cells of patients with limb ischemia by apheresis after 5-day administration of granulocyte colony-stimulating factor. PBS and 1x10(3) (low), 1x10(5) (mid), or 5x10(5) (high) CD34+ cells were intramyocardially transplanted after ligation of the left anterior descending coronary artery of nude rats. Functional assessments with the use of echocardiography and a microtip conductance catheter at day 28 revealed dose-dependent preservation of left ventricular function by CD34+ cell transplantation. Necropsy examination disclosed dose-dependent augmentation of capillary density and dose-dependent inhibition of left ventricular fibrosis. Immunohistochemistry for human-specific brain natriuretic peptide demonstrated that human cardiomyocytes were dose-dependently observed in ischemic myocardium at day 28 (high, 2480+/-149; mid, 1860+/-141; low, 423+/-9; PBS, 0+/-0/mm2; P<0.05 for high versus mid and mid versus low). Immunostaining for smooth muscle actin and human leukocyte antigen or Ulex europaeus lectin type 1 also revealed dose-dependent vasculogenesis by endothelial cell and SMC development after CD34+ cell transplantation. Reverse transcriptase-polymerase chain reaction indicated that human-specific gene expression of cardiomyocyte (brain natriuretic peptide, cardiac troponin-I, myosin heavy chain, and Nkx 2.5), SMC (smooth muscle actin and sm22alpha), and endothelial cell (CD31 and KDR) markers were dose-dependently augmented in MI tissue.
Conclusions: Human CD34+ cell transplantation may have significant and dose-dependent potential for vasculogenesis and cardiomyogenesis with functional recovery from MI.