In weakly orienting media such as poly-gamma-benzyl-L-glutamate (PBLG) a polymer that forms a chiral liquid crystal in organic solvents, the spectral resolution for embedded molecules is usually poor because of numerous (1)H, (1)H dipolar couplings that generally broaden proton spectra. Therefore (1)H, (13)C dipolar couplings are difficult or impossible to measure. Here, we incorporate Flip-Flop decoupling during detection into an HSQC experiment. Flip-Flop removes the (1)H, (1)H dipolar couplings and scales the chemical shifts of the protons as well as the (1)H, (13)C dipolar couplings during detection. A resolution gain by a factor 1.5-4.2 and improved signal intensity by an average factor of 1.6-1.7 have been obtained. This technique is demonstrated on (+)-menthol dissolved in a PBLG/CDCl(3) phase.