The timing of appearance of mRNAs encoding gap junction proteins was examined during development of the rat and mouse brain. Complementary DNAs (cDNAs) specific for the mRNA for the liver-type gap junction protein, connexin32, and the heart-type gap junction protein, connexin43, were used to probe Northern blots of total RNA isolated from the forebrain and hindbrain of mice and rats at various times before and after birth. Prior to postnatal day 10, connexin32 mRNA is detectable only at low levels. By postnatal days 10 to 16, a sharp increase occurs in the level of this mRNA. This increase is detectable first in the hindbrain, and subsequently in the forebrain. In contrast, connexin43 mRNA is readily detectable at birth, and the level of this mRNA also increases during subsequent development. The developmental appearance of the gap junction proteins, connexin32 and connexin43, was similar to that of their respective mRNAs. These results indicate that the genes encoding connexin32 and connexin43 are differentially expressed during neural development.