While antidepressant pharmacotherapy is an effective treatment of depression, it still is hampered by a delayed time of onset of clinical improvement and a series of side effects. Moreover, a substantial group of patients has only limited response or fails to respond at all. One source accounting for these variations are genetic differences as currently analysed by single nucleotide polymorphisms (SNP) mapping. In recent years a number of pharmacogenetic studies on antidepressant drugs have been published. So far they mostly focused on metabolizing enzymes of the cytochrome P450 (CYP) families and genes within the monoaminergic system with compelling evidence for an effect of CYP2D6 polymorphisms on antidepressant drug plasma levels and of a serotonin transporter promoter polymorphism on clinical response to a specific class of antidepressants, the selective serotonin reuptake inhibitors. It is clear, however, that other candidate systems have to be considered in the pharmacogenetics of antidepressant drugs, such as neuropeptidergic systems, the hypothalamus-pituitary adrenal (HPA) axis and neurotrophic systems. There is recent evidence that polymorphisms in genes regulating the HPA axis have an important impact on response to antidepressants. These studies mark the beginning of an emerging standard SNP profiling system that ultimately allows identifying the right drug for the right patient at the right time.