Improved detection of coronary artery disease by stress perfusion cardiovascular magnetic resonance with the use of delayed enhancement infarction imaging

J Am Coll Cardiol. 2006 Apr 18;47(8):1630-8. doi: 10.1016/j.jacc.2005.10.074. Epub 2006 Mar 27.

Abstract

Objectives: We tested a pre-defined visual interpretation algorithm that combines cardiovascular magnetic resonance (CMR) data from perfusion and infarction imaging for the diagnosis of coronary artery disease (CAD).

Background: Cardiovascular magnetic resonance can assess both myocardial perfusion and infarction with independent techniques in a single session.

Methods: We prospectively enrolled 100 consecutive patients with suspected CAD scheduled for X-ray coronary angiography. Patients had comprehensive clinical evaluation, including Rose angina questionnaire, 12-lead electrocardiography, C-reactive protein, and calculation of Framingham risk. Cardiovascular magnetic resonance included cine, adenosine-stress and rest perfusion-CMR, and delayed enhancement-CMR (DE-CMR) for infarction imaging. Matched stress-rest perfusion defects in the absence of infarction by DE-CMR were considered artifactual. All patients underwent X-ray angiography within 24 h of CMR.

Results: Ninety-two patients had complete CMR examinations. Significant CAD (> or =70% stenosis) was found in 37 patients (40%). The combination of perfusion and DE-CMR had a sensitivity, specificity, and accuracy of 89%, 87%, and 88%, respectively, for CAD diagnosis, compared with 84%, 58%, and 68%, respectively, for perfusion-CMR alone. The combination had higher specificity and accuracy (p < 0.0001), owing to incorporating the exceptionally high specificity (98%) of DE-CMR. Receiver operating characteristic curve analysis demonstrated the combination provided better performance than cine, perfusion, or DE-CMR alone. The accuracy was high in single-vessel and multivessel disease and independent of CAD location. Multivariable analysis including standard clinical parameters demonstrated the combination was the strongest independent CAD predictor.

Conclusions: A combined perfusion and infarction CMR examination with a visual interpretation algorithm can accurately diagnose CAD in the clinical setting. The combination is superior to perfusion-CMR alone.

Publication types

  • Comparative Study
  • Evaluation Study
  • Research Support, N.I.H., Extramural

MeSH terms

  • Aged
  • Algorithms
  • Cardiovascular System / pathology*
  • Coronary Artery Disease / diagnosis*
  • Exercise Test*
  • Female
  • Humans
  • Image Enhancement*
  • Magnetic Resonance Angiography*
  • Male
  • Middle Aged
  • Myocardial Infarction / diagnosis*
  • Predictive Value of Tests
  • Prospective Studies
  • Time Factors