Mcl-1L cleavage is involved in TRAIL-R1- and TRAIL-R2-mediated apoptosis induced by HGS-ETR1 and HGS-ETR2 human mAbs in myeloma cells

Blood. 2006 Aug 15;108(4):1346-52. doi: 10.1182/blood-2005-12-007971. Epub 2006 Apr 25.

Abstract

We evaluated the ability of 2 human mAbs directed against TRAILR1 (HGS-ETR1) and TRAILR2 (HGS-ETR2) to kill human myeloma cells. HGS-ETR1 and HGS-ETR2 mAbs killed 15 and 9 human myeloma cell lines (HMCLs; n = 22), respectively. IL-6, the major survival and growth factor for these HMCLs, did not prevent their killing. Killing induced by either HGS-ETR1 or HGS-ETR2 was correlated with the cleavage of Mcl-1L, a major molecule for myeloma survival. Mcl-1L cleavage and anti-TRAILR HMCL killing were dependent on caspase activation. Kinetic studies showed that Mcl-1L cleavage occurred very early (less than 1 hour) and became drastic once caspase 3 was activated. Our data showed that both the extrinsic (caspase 8, Bid) and the intrinsic (caspase 9) pathways are activated by anti-TRAIL mAb. Finally, we showed that the HGS-ETR1 and, to a lesser extent, the HGS-ETR2 mAbs were able to induce the killing of primary myeloma cells. Of note, HGS-ETR1 mAb was able to induce the death of medullary and extramedullary myeloma cells collected from patients at relapse. Taken together, our data clearly encourage clinical trials of anti-TRAILR1 mAb in multiple myeloma, especially for patients whose disease is in relapse, at the time of drug resistance.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antibodies, Monoclonal / pharmacology*
  • Antibodies, Monoclonal / therapeutic use
  • Apoptosis / drug effects*
  • Cell Line, Tumor
  • Clinical Trials as Topic
  • Drug Resistance, Neoplasm / drug effects
  • Humans
  • Multiple Myeloma / drug therapy
  • Multiple Myeloma / metabolism*
  • Myeloid Cell Leukemia Sequence 1 Protein
  • Neoplasm Proteins / metabolism*
  • Protein Processing, Post-Translational / drug effects
  • Proto-Oncogene Proteins c-bcl-2 / metabolism*
  • Receptors, TNF-Related Apoptosis-Inducing Ligand
  • Receptors, Tumor Necrosis Factor / antagonists & inhibitors*

Substances

  • Antibodies, Monoclonal
  • Myeloid Cell Leukemia Sequence 1 Protein
  • Neoplasm Proteins
  • Proto-Oncogene Proteins c-bcl-2
  • Receptors, TNF-Related Apoptosis-Inducing Ligand
  • Receptors, Tumor Necrosis Factor
  • TNFRSF10A protein, human
  • TNFRSF10B protein, human