In vivo micro-MRI of intracortical neurovasculature

Neuroimage. 2006 Aug 1;32(1):62-9. doi: 10.1016/j.neuroimage.2006.03.027. Epub 2006 May 3.

Abstract

This work describes a methodology for in vivo MR imaging of arteries and veins within the visual cortex of the cat brain. Very high magnetic fields (9.4 T) and small field-of-view 3D acquisitions were used to image the neurovasculature at resolutions approaching the microscopic scale. A combination of time-of-flight MR angiography and T*(2)-weighted imaging, using both endogenous BOLD contrast and an exogenous iron-oxide contrast agent, provided high specificity for distinguishing between arteries and veins within the cortex. These acquisition techniques, combined with 3D image processing and display methods, were used to detect and visualize intracortical arteries and veins with diameters smaller than 100 microm. This methodology can be used for visualizing the neurovasculature or building models of the vascular network and may benefit a variety of research applications including fMRI, cerebrovascular disease and cancer angiogenesis.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cats
  • Cerebral Angiography / methods
  • Cerebral Arteries / anatomy & histology
  • Cerebral Arteries / diagnostic imaging
  • Cerebrovascular Circulation / physiology*
  • Female
  • Image Processing, Computer-Assisted
  • Magnetic Resonance Imaging / methods*
  • Microcirculation / physiology*
  • Miniaturization
  • Models, Animal
  • Oxygen / blood
  • Sensitivity and Specificity

Substances

  • Oxygen