Vascular smooth muscle cell (VSMC) apoptosis occurs in advanced atherosclerotic plaques where it may contribute to plaque instability. VSMCs express the death receptor Fas but are relatively resistant to Fas-induced apoptosis due in part to the intracellular sequestration of Fas. Although inflammatory cytokines such as interferon (IFN)-gamma present in plaques can prime VSMCs to FasL-induced death, the mechanism of this effect is unclear. We examined Fas expression and FasL-induced apoptosis in human VSMCs in response to IFN-gamma. IFN-gamma induced Fas trafficking to the cell surface within 24 hours, an effect that required Jak2/Stat1 activity. IFN-gamma also stimulated Akt activity, and both Fas trafficking and Stat1 activation were inhibited by blocking PI3K, Akt, or Jak-2. IFN-gamma increased Fas-induced apoptosis in vitro by 46 +/- 8% (mean +/- SEM, P = 0.04), an event that could be abrogated by inhibition of PI3K, Akt, or Jak-2. IFN-gamma also increased Fas-induced apoptosis in vivo 7.5- to 15-fold (P < 0.05) in human arteries transplanted into immunodeficient mice, accompanied by increased Fas and phospho-Ser727-Stat1. We conclude that IFN-gamma primes VSMCs to Fas-induced apoptosis, in part by relocation of Fas to the cell surface, a process that involves PI3K, Akt, and Jak-2/Stat1. IFN-gamma present in plaques may co-operate with FasL to induce VSMC apoptosis in atherosclerosis.