A drug interaction refers to an event in which the usual pharmacological effect of a drug is modified by other factors, most frequently additional drugs. When two drugs are administered simultaneously, or within a short time of each other, an interaction can occur that may increase or decrease the intended magnitude or duration of the effect of one or both drugs. Drugs may interact on a pharmaceutical, pharmacokinetic or pharmacodynamic basis. Pharmacodynamic interactions arise when the alteration of the effects occurs at the site of action. This is a wide field where not only interactions between different drugs are considered but also drug and metabolites (midazolam/alpha-hydroxy-midazolam), enantiomers (ketamine), as well as phenomena such as tolerance (nordiazepam) and sensitization (diazepam). Pharmacodynamic interactions can result in antagonism or synergism and can originate at a receptor level (antagonism, partial agonism, down-regulation, up-regulation), at an intraneuronal level (transduction, uptake), or at an interneuronal level (physiological pathways). Alternatively, psychotropic drug interactions assessed through quantitative pharmaco-EEG can be viewed according to the broad underlying objective of the study: safety-oriented (ketoprofen/theophylline, lorazepam/diphenhydramine, granisetron/haloperidol), strictly pharmacologically-oriented (benzodiazepine receptors), or broadly neuro-physiologically-oriented (diazepam/buspirone). Methodological issues are stressed, particularly drug plasma concentrations, dose-response relationships and time-course of effects (fluoxetine/buspirone), and unsolved questions are addressed (yohimbine/caffeine, hydroxizyne/alcohol).