Objectives: The purpose of the present study was to validate the diagnostic accuracy of optical coherence tomography (OCT), integrated backscatter intravascular ultrasound (IB-IVUS), and conventional intravascular ultrasound (C-IVUS) for tissue characterization of coronary plaques and to evaluate the advantages and limitations of each of these modalities.
Background: The diagnostic accuracy of OCT for characterizing tissue types is well established. However, comparisons among OCT, C-IVUS, and IB-IVUS have not been done.
Methods: We examined 128 coronary arterial sites (42 coronary arteries) from 17 cadavers; IVUS and OCT images were acquired on the same slice as histology. Ultrasound signals were obtained using an IVUS system with a 40-MHz catheter and digitized at 1 GHz with 8-bit resolution. The IB values of the ultrasound signals were calculated with a fast Fourier transform.
Results: Using histological images as a gold standard, the sensitivity of OCT for characterizing calcification, fibrosis, and lipid pool was 100%, 98%, and 95%, respectively. The specificity of OCT was 100%, 94%, and 98%, respectively (Cohen's kappa = 0.92). The sensitivity of IB-IVUS was 100%, 94%, and 84%, respectively. The specificity of IB-IVUS was 99%, 84%, and 97%, respectively (Cohen's kappa = 0.80). The sensitivity of C-IVUS was 100%, 93%, and 67%, respectively. The specificity of C-IVUS was 99%, 61%, and 95%, respectively (Cohen's kappa = 0.59).
Conclusions: Within the penetration depth of OCT, OCT has a best potential for tissue characterization of coronary plaques. Integrated backscatter IVUS has a better potential for characterizing fibrous lesions and lipid pools than C-IVUS.