Plasma adrenomedullin and endothelin-1 concentration during low-dose dobutamine infusion: Relationship between pulmonary uptake and pulmonary vascular pressure/flow characteristics

Regul Pept. 2006 Sep 11;136(1-3):85-91. doi: 10.1016/j.regpep.2006.04.014. Epub 2006 Jun 30.

Abstract

Aim: To study the role of endothelin (ET-1) and adrenomedullin (AM) on pulmonary vascular pressure/flow characteristic (pulmonary arterial pressure/cardiac output (Pap/CO)) during low-dose dobutamine infusion.

Methods: Case control study of 14 patients (12 men, 2 women) with severe lung disease (chronic obstructive pulmonary disease, COPD n=5; cystic fibrosis, CF n=9) and 5 control subjects (CTRL, 4 men, 1 woman). ET-1 and AM plasma levels in pulmonary artery (mixed venous blood, ven) and aorta or femoral artery (arterial, art), were measured at baseline and during dobutamine infusion (5-10-15 mcg kg(-1) min(-1)). The Ppa/CO coordinates obtained at baseline and during dobutamina infusion for each patients were used to calculate the Slope and Intercept by linear regression analysis.

Results: Baseline hemodynamics measurements were similar in the three groups with a trend towards a mild elevation in Ppa in CF group (Ppa mm Hg: CTRL 19+/-3.5, COPD 19.4+/-5.5, CF 22.7+/-7.5). Baseline plasma ET-1(ET-1ven pg ml(-1): CTRL 13.9+/-6.7, COPD 20.1+/-14, CF 20.4+/-7.1; ET-1art pg ml(-1): CTRL 16.7+/-6.4, COPD 20.1+/-11.7, CF 18.1+/-3.9) and AM (AMven pg ml(-1): CTRL 15.8+/-5, COPD 31.8+/-17.6, CF 27.7+/-7.6; AMart pg ml(-1): CTRL 15.9+/-1.4, COPD 21.4+/-3.8, CF 27+/-7.6) showed a trend towards higher value among patients' groups compared to the controls. Baseline ET-1 pulmonary gradient did not show significant difference among the three groups as well AM pulmonary gradient. Dobutamine infusion caused a comparable increase of heart rate and CO in the three groups. Mean pulmonary pressure had a trend towards a greater increase in COPD and CF than in controls, consequently, pulmonary Pap/CO relationship showed a steeper slope in patients' groups (Slope mm Hg L(-1) min(-1): CTRL 0.9+/-0.3, COPD 2.1+/-0.8 p<0.02 vs. CTRL, CF 1.9+/-0.9 p<0.03 vs CTRL). During dobutamine plasma ET-1 and AM showed a great individual variability resulting in no significant difference among groups. ET-1 pulmonary gradient showed a trend towards pulmonary uptake in patients' groups (ET-1art-ven pg min(-1): CTRL 2.7+/-2.9, COPD-6.1+/-7.8, CF -4+/-4.8) while AM pulmonary gradient did not show any particular pattern. During dobutamine ET-1 was significantly correlated to Pap/CO characteristics (Slope and ET-1ven, r=-0.59, p<0.05; Slope and ET-1art-ven, r=-0.60, p<0.05; Intercept and ET-1art-ven, r=0.63, p<0.004), and ET-1art-ven was the only independent variable related to Slope and Intercept.

Conclusions: In patients with moderate pulmonary vascular impairment, ET-1 pulmonary gradient, but not AM pulmonary gradient, is inversely correlated with pulmonary incremental resistance, suggesting a role of ET-1 in the regulation of pulmonary vascular resistance.

MeSH terms

  • Adrenergic beta-Agonists / pharmacology
  • Adrenomedullin / blood*
  • Adrenomedullin / metabolism
  • Adult
  • Aged
  • Blood Pressure / drug effects
  • Dobutamine / administration & dosage*
  • Dobutamine / metabolism
  • Endothelin-1 / blood*
  • Endothelin-1 / metabolism
  • Female
  • Humans
  • Lung / drug effects*
  • Lung / pathology
  • Lung Diseases / metabolism
  • Male
  • Middle Aged
  • Multivariate Analysis
  • Peptides / blood
  • Pulmonary Circulation / drug effects*
  • Respiratory Function Tests

Substances

  • Adrenergic beta-Agonists
  • Endothelin-1
  • Peptides
  • Adrenomedullin
  • Dobutamine