Induction of erythroid-specific genes by overexpression of GATA-2 in K562 cells

Int J Hematol. 2006 Jul;84(1):38-42. doi: 10.1532/IJH97.06020.

Abstract

GATA transcription factors have been shown to play important roles in hematopoiesis. GATA-2 is expressed in stem and progenitor cells, and has been speculated to control the proliferation and maintain the immaturity of these cells. To examine whether the function of GATA-2 is changeable according to the differentiation stage, we established GATA-2 overexpressing subclones of K562, which is a leukemic cell line committed to the erythroid lineage. Via an increase in the GATA-2 expression level, the expression levels of erythroid-specific genes including alpha-, beta-, and gamma-globin were increased compared to control cells, while the expression level of GATA-1 was unchanged. Expression of the transferrin receptor was also increased in GATA-2 overexpressing K562 cells when examined by flow cytometry. In addition, the heme content of GATA-2 overexpressing K562 cells was more than 2 times higher than control cells. Chromatin immunoprecipitation analysis showed that GATA-2 protein binding to the GATA element in alpha-globin LCR was increased in GATA-2 overexpressing K562 cells. These findings suggest that GATA-2 could induce erythroid-specific genes without competition with GATA-1 when expressed in erythroid-committed cells, and thus further suggest that temporal and spatial regulation may be important for displaying specific functions of GATA-2.

Publication types

  • Comparative Study

MeSH terms

  • Cell Differentiation / physiology*
  • Chromatin / genetics
  • Chromatin / metabolism
  • Erythroid Precursor Cells / metabolism*
  • Erythropoiesis* / genetics
  • GATA2 Transcription Factor / biosynthesis*
  • GATA2 Transcription Factor / genetics
  • Gene Expression Regulation* / genetics
  • Gene Expression*
  • Humans
  • K562 Cells

Substances

  • Chromatin
  • GATA2 Transcription Factor