Molecular control of vertebrate iron homeostasis by iron regulatory proteins

Biochim Biophys Acta. 2006 Jul;1763(7):668-89. doi: 10.1016/j.bbamcr.2006.05.004. Epub 2006 May 17.

Abstract

Both deficiencies and excesses of iron represent major public health problems throughout the world. Understanding the cellular and organismal processes controlling iron homeostasis is critical for identifying iron-related diseases and in advancing the clinical treatments for such disorders of iron metabolism. Iron regulatory proteins (IRPs) 1 and 2 are key regulators of vertebrate iron metabolism. These RNA binding proteins post-transcriptionally control the stability or translation of mRNAs encoding proteins involved in iron homeostasis thereby controlling the uptake, utilization, storage or export of iron. Recent evidence provides insight into how IRPs selectively control the translation or stability of target mRNAs, how IRP RNA binding activity is controlled by iron-dependent and iron-independent effectors, and the pathological consequences of dysregulation of the IRP system.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Animals
  • Homeostasis*
  • Iron / metabolism*
  • Iron-Regulatory Proteins / metabolism*
  • Vertebrates / metabolism*

Substances

  • Iron-Regulatory Proteins
  • Iron