Cytochrome P450 was first found in the microsomes from animal tissues, and then the presence of P450 in mitochondria was reported for the steroidogenic organs, adrenal gland and gonads. Three forms of mitochondrial P450 (11A, 11B1, and 11B2) were purified from these organs and their functions in steroid hormone biosynthesis were confirmed. Later studies showed the presence of several other forms of P450 (24A, 27A, 27B, and 27C) in the mitochondria of various non-steroidogenic organs including liver and kidney. These mitochondrial P450s were found to participate in the biosynthesis of bile acids from cholesterol in the liver, and the metabolic activation of Vitamin D3 to its active form, 1,25-dihydroxyvitamin D3, in the liver and the kidney. In contrast to the "drug-metabolizing" P450s in microsomes, most mitochondrial P450s show high specificity to their endogenous substrates, and have negligible activity towards xenobiotic compounds. In contrast to these established roles of mitochondrial P450s in the metabolism of endogenous substrates, the metabolism of xenobiotic chemicals by P450-catalyzed reactions in mitochondria has long been a subject of controversy. It is now known that all P450s in eukaryotic organisms are coded by nuclear genes, and the nascent peptides of various forms of P450 synthesized by cytoplasmic ribosomes are targeted to either endoplasmic reticulum (ER) or mitochondria depending on the ER-targeting sequence or the mitochondria-targeting sequence present in their amino-terminal portion. However, the presence of some microsome-type P450s in the mitochondria from various animal tissues including liver and brain has been reported. Possible mechanisms of intracellular sorting of some microsome-type P450s to mitochondria have been proposed, although physiological significance of the contribution of P450s in mitochondria to the metabolism of xenobiotic chemicals in animal tissues is still elusive.