The commercial production of microbiologically safe and stable sauces containing acetic acid is guided by the Comité des Industries des Mayonnaises et Sauces Condimentaires de la Communauté Economique Européenne's (CIMSCEE) code. The CIMSCEE safety value is calculated using a linear regression equation combining weighted contributions of pH and aqueous-phase concentrations of undissociated acetic acid, NaCl, and sugars. By implication, the CIMSCEE safety equation predicts that increasing concentrations of hurdles will always increase inactivation of the target pathogen. In this study, the time to achieve a 3-log10 reduction of an acid-resistant, acid-adapted, Shiga toxin-producing Escherichia coli (STEC) O157 isolate was determined experimentally for 81 formulations at various pHs and acetic acid, NaCl, and sucrose concentrations in a broth model. The combinations were intended to simulate the aqueous phase of acidic sauces and dressings. Experimental data were fitted to the log logistic model to estimate the time to 3-log10 reduction (t3D). Comparison of fitted t3D estimates with CIMSCEE values showed agreement in predicting safety (as defined by CIMSCEE) for the majority of formulations. However, CIMSCEE safety predictions were "fail dangerous" for 13 of 81 formulations. Among these formulations and others, the observed E. coli t3D initially increased and then decreased with increasing osmolalities (NaCl and sucrose). Relative protection increased with exposure time where the protective effect of NaCl predominated. While commercial acidic sauces are not considered high-risk vehicles for STEC, interactions among hurdles that decrease their combined effectiveness are deserving of further investigation because they may reveal mechanisms of broader relevance in the inactivation of pathogens in foods.