In conventionally reared mice germinal centers (GCs) are chronically induced in Peyer's patches (PP), mesenteric lymph node (MLN), and isolated lymphoid follicles (ILF) of gut-associated lymphoid tissues (GALT), as a result of continuous B cell stimulation by commensal bacteria. It is generally thought that BCR-mediated antigen recognition controls the recruitment and thus selection of B cells within GALT GCs. However, recent results challenge this view and suggest that engagement of innate immune receptors by microbial antigens promotes B cell recruitment to, and maintenance within, the GC, irrespective of BCR specificity. We propose a scenario in which microbial determinants presented by follicular dendritic cells (FDCs) to innate receptors on B cells within the GC support the survival and concomitant expansion of somatically mutated, IgA-class-switched B cell clones expressing a variety of BCR specificities. From this pool, B cell mutants recognizing gut-derived antigens through their BCR are either, in GCs, drawn into the process of affinity maturation, or, in the lamina propria (LP) of the gut, locally selected to differentiate into plasmablasts, thus contributing to the continuous production of IgA antibodies required for an efficient protection against commensal and pathogenic microorganisms.