A power-law distribution of the length of perfectly conserved sequence from mouse/human whole-genome intersection and alignment is exhibited. Spatial correlations of these elements within the mouse genome are studied. It is argued that these power-law distributions and correlations are comprised in part by functional noncoding sequence and ought to be accounted for in estimating the statistical significance of apparent sequence conservation. These inter-genomic correlations of conservation are placed in the context of previously observed intra-genomic correlations, and their possible origins and consequences are discussed.