The western diamondback rattlesnake (Crotalus atrox) is a prominent member of North American desert and semi-arid ecosystems, and its importance extends from its impact on the region's ecology and imagery, to its medical relevance as a large deadly venomous snake. We used mtDNA sequences to identify population genetic structure and historical demographic patterns across the range of this species, and relate these to broader patterns of historical biogeography of desert and semi-arid regions of the southwestern USA and adjacent Mexico. We inferred a Late Pliocene divergence between peninsular and continental lineages of Crotalus, followed by an Early Mid Pleistocene divergence across the continental divide within C. atrox. Within desert regions (Sonoran and Chihuahuan Deserts, Southern Plains, and Tamaulipan Plain) we observed population structure indicating isolation of populations in multiple Pleistocene refugia on either side of the continental divide, which we attempt to identify. Evidence of post-glacial population growth and range expansion was inferred, particularly in populations east of the continental divide. We observed clear evidence of (probably recent) gene flow across the continental divide and secondary contact of haplotype lineages. This recent gene flow appears to be particularly strong in the West-to-East direction. Our results also suggest that Crotalus tortugensis (Tortuga Island rattlesnake) and a population of 'C. atrox' inhabiting Santa Cruz Island (in the Gulf of California) previously suggested to be an unnamed species, are in fact deeply phylogenetically nested within continental lineages of C. atrox. Accordingly, we suggest C. tortugensis and 'C. atrox' from Santa Cruz Island be placed in the synonymy of C. atrox.