Hypoxia-inducible factor 1alpha (HIF-1alpha) transcriptionally activates multiple genes, which regulate metabolic cardioprotective and cross-adaptive mechanisms. Hypoxia and several other stimuli induce the HIF-1alpha signaling cascade, although little data exist regarding the stress threshold for activation in heart. We tested the hypothesis that relatively mild short-cycle hypoxia, which produces minimal cardiac dysfunction and no sustained or major disruption in energy state, can induce HIF-1alpha activation. We developed a short-cycle hypoxia protocol in isolated perfused rabbit heart to test this hypothesis. By altering cycling conditions, we identified a specific cycle with O(2) content and duration that operated near a threshold for causing functional injury in these rabbit hearts. Mild short-cycle hypoxia for 46 min elevated HIF-1alpha mRNA and protein within 45 min after reoxygenation. Expression also increased for multiple HIF-1alpha target genes, such as VEGF and heme oxygenase 1. After mild hypoxia, VEGF protein accumulation occurred, although HIF-1alpha and VEGF protein accumulation were suppressed after more severe hypoxia, which also caused depletion of ATP and nondiffusible nucleotides. In summary, these results indicate that mild near-threshold hypoxia induces HIF-1alpha cascade, but more severe hypoxia suppresses protein accumulation for this transcription factor and the target genes. Posttranscriptional suppression of these proteins occurs under conditions of altered energy state, exemplified by ATP depletion.