Objective: The purpose of this study was to determine the maximum benefit provided by a time-frequency gain-manipulation algorithm for noise-reduction (NR) based on an ideal detector of speech energy. The amount of detected energy necessary to show benefit using this type of NR algorithm was examined, as well as the necessary speed and frequency resolution of the gain manipulation.
Design: NR was performed using time-frequency gain manipulation, wherein the gains of individual frequency bands depended on the absence or presence of speech energy within each band. Three different experiments were performed: (1) NR using ideal detectors, (2) NR with nonideal detectors, and (3) NR with ideal detectors and different processing speeds and frequency resolutions. All experiments were performed using the Hearing-in-Noise test (HINT). A total of 6 listeners with normal hearing and 14 listeners with hearing loss were tested.
Results: HINT thresholds improved for all listeners with NR based on the ideal detectors used in Experiment I. The nonideal detectors of Experiment II required detection of at least 90% of the speech energy before an improvement was seen in HINT thresholds. The results of Experiment III demonstrated that relatively high temporal resolution (<100 msec) was required by the NR algorithm to improve HINT thresholds.
Conclusions: The results indicated that a single-microphone NR system based on time-frequency gain manipulation improved the HINT thresholds of listeners. However, to obtain benefit in speech intelligibility, the detectors used in such a strategy were required to detect an unrealistically high percentage of the speech energy and to perform the gain manipulations on a fast temporal basis.