We profiled changes in gene expression in the hippocampus 2 days after a 4 h general anesthetic with isoflurane and nitrous oxide. Eighteen month old Fisher 344 rats were anesthetized for 4 h with 1.2% isoflurane and 70% nitrous oxide (N=9) whereas control rats breathed 30% oxygen for 4 h (N=9). Rats were sacrificed 48 h later and RNA extracted from the hippocampus for gene expression profiling. Three gene arrays were used per group, with samples prepared by pooling RNA from three rats. Differentially expressed genes were analyzed based on a weighted error statistical model. Microarray results for 6 differentially expressed genes were verified with reverse transcriptase polymerase chain reaction. Compared to unanesthetized controls, 297 genes were differentially expressed 2 days following anesthesia (P<0.05). Of these, 113 are named genes; 64% were up-regulated and 36% were down-regulated. The majority of differentially expressed genes are implicated in cell stress and replication, signal transduction, transcription, protein biosynthesis, cell structure, and metabolism. The correlation between fold changes on array and reverse transcriptase polymerase chain reaction was good (R2=0.85) for the 6 genes examined with both methods. These results demonstrate that in rats general anesthesia is associated with persistent changes in hippocampal gene expression, suggesting that recovery of the brain from anesthesia is considerably slower than generally recognized.