Novel amine- or ammonium-terminated carbosilane dendrimers of type nG-[Si{OCH2(C6H3)-3,5-(OCH2CH2NMe2)2}]x, nG-[Si{O(CH2)2N(Me)(CH2)2NMe2}]x and nG-[Si{(CH2)3NH2}]x or nG-[Si{OCH2(C6H3)-3,5-(OCH2CH2NMe3 +I-)2}]x, nG-[Si{O(CH2)2N(Me)(CH2)2NMe3 +I-}]x, and nG-[Si{(CH2)3NH3 +Cl-}]x have been synthesized and characterized up to the third generation by two strategies: 1) alcoholysis of Si--Cl bonds with amino alcohols and subsequent quaternization with MeI, and 2) hydrosilylation of allylamine with Si--H bonds of the dendritic systems and subsequent quaternization with HCl. Quaternized carbosilane dendrimers are soluble in water, although degradation is apparent due to hydrolysis of Si--O bonds. However, dendrimers containing Si--C bonds are water-stable. The biocompatibility of the second-generation dendrimers in primary cell cultures of peripheral blood mononuclear cells (PBMCs) and erythrocytes have been analyzed, and they show good toxicity profiles over extended periods. In addition, we describe a study on the interactions between the different carbosilane dendrimers and DNA oligodeoxynucleotides (ODNs) and plasmids along with a comparative analysis of their toxicity. They can form complexes with DNA ODNs and plasmids at biocompatible doses via electrostatic interaction. Also a preliminary transfection assay has been accomplished. These results demonstrate that the new ammonium-terminated carbosilane dendrimers are good base molecules to be considered for biomedical applications.