A series of [Tm(Me)M(mu-Cl)]2 and Tm(R)MCl (Tm(R) = tris(mercaptoimidazolyl)borate; R = Me, tBu, Ph, 2,6-iPr2C6H3 (Ar); M = Mn, Fe, Co, Ni) complexes have been prepared by treatment of NaTm(Me) or LiTm(R) with an excess amount of metal(II) chlorides, MCl2. Treatment of Tm(R)MCl (R = tBu, Ph, Ar) with NaI led to a halide exchange to afford Tm(R)MI. The molecular structures of [Tm(Me)M(mu-Cl)]2 (M = Mn, Ni), [Tm(Me)Ni(mu-Br)]2, Tm(tBu)MCl (M = Fe, Co), Tm(Ph)MCl (M = Mn, Fe, Co, Ni), Tm(Ar)MCl (M = Mn, Fe, Co, Ni), Tm(Ph)MI (M = Mn, Co), and Tm(Ar)MI (M = Fe, Co, Ni) have been determined by X-ray crystallography. The Tm(R) ligands occupy the tripodal coordination site of the metal ions, giving a square pyramidal or trigonal bipyramidal coordination geometry for Tm(Me)M(mu-Cl)]2 and a tetrahedral geometry for the Tm(R)MCl complexes, where the S-M-S bite angles are larger than the reported N-M-N angles of the corresponding hydrotris(pyrazolyl)borate (Tp(R)) complexes. Treatment of Tm(Ph)2Fe with excess FeCl2 affords Tm(Ph)FeCl, indicating that Tm(R)2M as well as Tm(R)MCl is formed at the initial stage of the reaction between MCl2 and the Tm(R) anion.