Analysis of leukocyte rolling in vivo and in vitro

Methods Enzymol. 2006:416:346-71. doi: 10.1016/S0076-6879(06)16023-1.

Abstract

Leukocyte rolling is an important step for the successful recruitment of leukocytes from blood to tissues mediated by a specialized group of glycoproteins termed selectins. Because of the dynamic process of leukocyte rolling, binding of selectins to their respective counter-receptors (selectin ligands) needs to fulfill three major requirements: (1) rapid bond formation, (2) high tensile strength, and (3) fast dissociation rates. These criteria are perfectly met by selectins, which interact with specific carbohydrate determinants on selectin ligands. This chapter describes the theoretical background, technical requirements, and analytical tools needed to quantitatively assess leukocyte rolling in vivo and in vitro. For the in vivo setting, intravital microscopy allows the observation and recording of leukocyte rolling under different physiological and pathological conditions in almost every organ. Real-time and off-line analysis tools help to assess geometric, hemodynamic, and rolling parameters. Under in vitro conditions, flow chamber assays such as parallel plate flow chamber systems have been the mainstay to study interactions between leukocytes and adhesion molecules under flow. In this setting, adhesion molecules are immobilized on plastic, in a lipid monolayer, or presented on cultured endothelial cells on the chamber surface. Microflow chambers are available for studying leukocyte adhesion in the context of whole blood and without blood cell isolation. The microscopic observation of leukocyte rolling in different in vivo and in vitro settings has significantly contributed to our understanding of the molecular mechanisms responsible for the stepwise extravasation of leukocytes into inflamed tissues.

MeSH terms

  • Cell Adhesion / physiology
  • Cell Culture Techniques / instrumentation
  • Leukocyte Rolling / physiology*
  • Leukocytes / cytology
  • Leukocytes / physiology
  • Ligands
  • Microscopy
  • Selectins / physiology*

Substances

  • Ligands
  • Selectins