Cytoskeleton-membrane-extracellular matrix interactions at the node of Ranvier were examined in both central and peripheral axons by combining three different methods for tissue preparation with three different electron microscopic techniques for imaging supramolecular structure. Conventional and three-dimensional high voltage electron microscopy of thin and semithick sections of tissues stained en bloc with ferric chloride revealed the presence of transcellular structures across the nodal gap traversing the paranodal glial-axonal junction. These structures penetrate both axonal and glial membranes and are further traced to the cortical axoplasm. This observation was verified by an examination of similar regions in rapidly-frozen freeze-substituted fresh axons. The filamentous nature of these structures, their focal attachment to the external true surface of the nodal and paranodal axolemma and their association with membrane particles were visualized in deep etch rotary-shadow replicas. At the node, both extracellular gap-crossing filaments and membrane-cytoskeletal linkers in the nodal axoplasm are joined to one of the prominent membrane particles of the nodal axolemma. At the paranodal axo-glial junction, the anchoring site of these membrane-cytoskeleton linkers are found on the linear arrays of 16 nm particles. Thus, cytoplasmic filaments and extracellular filaments or bridge structures are involved in the membrane-cytoskeletal interaction at the node and paranode. Some of these membrane particles are known to play a role in ionic conductances known to occur at this site. An additional role in cell adhesion or maintenance of the membrane specialization of this functionally important site of axolemma is now indicated.