RNA interference (RNAi) has become an invaluable tool for the functional analysis of genes in a wide variety of organisms including the free-living nematode Caenorhabditis elegans. Recently, attempts have been made to apply this technology to parasitic helminths of animals and plants with variable success. Gene knockdown has been reported for Schistosoma mansoni by soaking or electroporating different life-stages in dsRNA. Similar approaches have been tested on parasitic nematodes which clearly showed that, under certain conditions, it was possible to interfere with gene expression. However, despite these successes, the current utility of this technology in parasite research is questionable. First, problems have arisen with the specificity of RNAi. Treatment of the parasites with dsRNA resulted, in many cases, in non-specific effects. Second, the current RNAi methods have a limited efficiency and effects are sometimes difficult to reproduce. This was especially the case in strongylid parasites where only a small number of genes were susceptible to RNAi-mediated gene knockdown. The future application of RNAi in parasite functional genomics will greatly depend on how we can overcome these difficulties. Optimization of the dsRNA delivery methods and in vitro culture conditions will be the major challenges.