Aims: In this study, a capillary polymerase chain reaction (cPCR) was applied for Salmonella detection from poultry meat.
Methods and results: Salmonella detection limits of the optimized cPCR were determined with DNA templates from the samples of tetrathionate broth (TTB), Rappaport Vassiliadis broth (RVB) and selenite cystine broth (SCB) artificially contaminated with 10-fold dilutions of 6 x 10(8) CFU ml(-1) of pure Salmonella enterica ssp. enterica serovar Enteritidis 64K stock culture. Detection limits of cPCR from TTB, RVB and SCB were found as 6, 6 x 10(1) and 6 x 10(4) CFU ml(-1), respectively. In addition, detection limits of bacteriology were also determined as 6 CFU ml(-1) with TTB and SCB, and 6 x 10(1) CFU ml(-1) with RVB. A total of 200 samples, consisting of 100 chicken and 100 turkey meat samples, were tested with optimized cPCR and bacteriology. Eight and six per cent of the chicken meat samples were found to harbour Salmonella by cPCR and standard bacteriology, respectively. Of six Salmonella isolates, four belonged to serogroup D, two to serogroup B.
Conclusions: The TTB cultures of both artificially and naturally contaminated samples were found to be superior to those of RVB and SCB cultures in their cPCR results. This cPCR, utilizing template from 18-h TTB primary enrichment broth culture, takes approximately 40 min in the successful detection of Salmonella from poultry meat.
Significance and impact of the study: This study shows that cPCR from TTB enrichment culture of poultry meat would enable rapid detection of Salmonella in laboratories with low sample throughput and limited budget.