Yearling steers (n = 2,552; 314 kg of initial BW) were used to evaluate the effects of ractopamine-HCl (RAC) and days on feed on performance, carcass characteristics, and skeletal muscle gene expression in finishing steers. Treatment groups included serial slaughter dates of 150, 171, or 192 d on feed. Within each slaughter date, steers either received RAC (200 mg/steer) daily for the final 28 d or were not fed RAC. All steers were initially implanted with Revalor-IS and were reimplanted with Revalor-S after 75 d on feed. At slaughter, muscle samples from the semimembranosus were collected for mRNA analysis of the beta-adrenergic receptors (beta-AR). Ractopamine administration increased (P < 0.05) ADG, G:F, and HCW and increased (P = 0.08) LM area. Ractopamine did not affect the dressing percentage, USDA yield grade, or quality grade (P > 0.3). There was no change in overall feed intake across the entire feeding period; however, feed intake was increased during the 28-d period during which the steers were fed RAC (P < or = 0.05). Greater days on feed decreased (P < 0.05) ADG, G:F, DMI, and the number of yield grade 1 and 2 carcasses. Also, greater days on feed increased (P < 0.05) HCW, dressing percentage, and the number of prime and choice carcasses, as well as the number of yield grade 4 and 5 carcasses. Increasing days on feed decreased (P < 0.05) the abundance of beta(1)-AR and beta(3)-AR mRNA and increased (P < 0.05) the abundance of beta(2)-AR mRNA in skeletal muscle samples obtained at slaughter. Ractopamine had no effect (P > 0.10) on the abundance of beta(1)-AR or beta(3)-AR mRNA, but tended (P = 0.09) to increase beta(2)-AR mRNA. Additional time-course studies with primary muscle cell cultures revealed that advancing time in culture increased (P < 0.001) beta(2)-AR mRNA but had no effect (P > 0.10) on beta(1)-AR or beta(3)-AR mRNA. We conclude that days on feed and RAC are affecting beta-AR mRNA levels, which could, in turn, impact the biological response to RAC feeding in yearling steers.