Purpose: To characterize the prognostic and predictive impact of protein expression profiles in high-risk breast cancer patients who had previously been shown to benefit from high-dose chemotherapy (HDCT) in comparison to dose-dense chemotherapy (DDCT).
Experimental design: The expression of 34 protein markers was evaluated using tissue microarrays containing paraffin-embedded breast cancer samples from 236 patients who were randomized to the West German Study Group AM01 trial.
Results: (a) 24 protein markers of the initial panel of 34 markers were sufficient to identify five profile clusters (subtypes) by K-means clustering: luminal-A (27%), luminal-B (12%), HER-2 (21%), basal-like (13%) cluster, and a so-called "multiple marker negative" (MMN) cluster (27%) characterized by the absence of specifying markers. (b) After DDCT, HER-2 and basal-like groups had significantly worse event-free survival [EFS; hazard ratio (HR), 3.6 [95% confidence interval (95% CI), 1.65-8.18; P = 0.001] and HR, 3.7 (95% CI, 1.68-8.48; P < 0.0001), respectively] when compared with both luminal groups. (c) After HDCT, the HR was 1.5 (95% CI, 0.76-3.05) for EFS in the HER-2 subgroup and 1.1 (95% CI, 0.37-3.32) in the basal-like subgroup, which indicates a better outcome for patients in the HER-2 and basal-like subgroups who received HDCT. The MMN cluster showed a trend to a better EFS after HDCT compared with DDCT.
Conclusions: Protein expression profiling in high-risk breast cancers identified five subtypes, which differed with respect to survival and response to chemotherapy: In contrast to luminal-A and luminal-B subtypes, HER-2 and basal-like subgroups had a significant predictive benefit, and the MMN cluster had a trend to a predictive benefit, both from HDCT when compared with DDCT.