Surface characterization and platelet compatibility evaluation of the binary mixed self-assembled monolayers

J Colloid Interface Sci. 2007 Apr 15;308(2):474-84. doi: 10.1016/j.jcis.2007.01.015. Epub 2007 Jan 12.

Abstract

This report describes a technique that used mixed self-assembled monolayer (SAM) as a model surface to evaluate the effect of steric hindrance on the SAM packing quality and its platelet compatibility. Two series of binary mixed SAMs were formed by mixing the bulky terminated alkanethiol (HS(CH2)10PO3H2) with a smaller terminated one (HS(CH2)9CH3 and HS(CH2)11OH) respectively. Surface characterization results showed the hydrophilicity on these two series of mixed SAMs changed with the solution mole fraction of PO3H2 terminated thiol, chi(PO3H2,soln), and reached to a nearly constant value as chi(PO3H2,soln) was 0.6 for PO3H2+CH3 SAM and 0.4 for PO3H2+OH SAM. This finding should be due to the gradual saturation of surface PO3H2 functionality on these mixed SAMs. The XPS analysis indicated the addition of the CH3 and OH terminated thiol could reduce the steric hindrance effect of PO3H2 functionality on monolayer formation and, henceforth, improve the SAM packing quality. In vitro platelet adhesion assay revealed the platelet compatibility on the PO3H2+OH SAMs was better than that on the PO3H2+CH3 and the pure PO3H2 ones. Moreover, the PO3H2+OH SAM with a low chi(PO3H2,soln) value exhibited the least platelet activating property of these two mixed SAM systems. These findings suggested that material's surface wettability and surface charge density should act collectively in affecting its platelet compatibility.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Blood Platelets*
  • Magnetic Resonance Spectroscopy
  • Surface Properties