There is increasing evidence that early event-related potentials are a result of phase alignment of ongoing background oscillations of the electroencephalogram rather than additive amplitude modulation. Steady state visual-evoked potentials (ssVEPs) can be recorded using an intensity modulated stimulus, resulting in an evoked brain response at a known frequency, i.e. the stimulation frequency. Given this property, the ssVEP is ideally suited for examining the relationship between single-trial fluctuations in phase/amplitude and the evoked brain potential resulting from averaging across trials. To address this issue, the current study investigated the contribution of single trial power and intertrial phase locking to ssVEP generation by presenting a peripheral flicker. Further, transient stimuli were presented during flicker and at three increasing latency lags following flicker offset to examine (1) to what extent a stimulus can disturb the ssVEP oscillation and (2) how phase alignment during P1-N1-P2 time windows is affected during presence of evoked oscillations. The former assessment evaluates the stability of ssVEPs and the latter the phase alignment processes to transient stimuli under experimentally induced background oscillations. We observed that ssVEPs are a result of phase alignment rather than single trial amplitude modulation. In addition, ssVEP oscillations were not disturbed by transient stimuli. Finally, phase alignment in P1-N1-P2 time windows was distorted during and shortly after steady state stimulation. We conclude that ssVEPs represent strongly phase locked oscillations sharing the same generation mechanisms as early evoked potentials.
(copyright) 2007 Wiley-Liss, Inc.