Nr2e3 and Nrl can reprogram retinal precursors to the rod fate in Xenopus retina

Dev Dyn. 2007 Jul;236(7):1970-9. doi: 10.1002/dvdy.21128.

Abstract

Transformation of undifferentiated progenitors into specific cell types is largely dependent on temporal and spatial expression of a complex network of transcription factors. Here, we examined whether neural retina leucine zipper (Nrl) and photoreceptor-specific nuclear receptor Nr2e3 transcription factors contribute to cell fate determination. We cloned the Xenopus Nr2e3 gene and showed that its temporal and spatial expression is similar to its mammalian ortholog. We tested its in vivo function by misexpressing these transcription factors in Xenopus eye primordia, demonstrating that either human Nr2e3 or Nrl directed photoreceptor precursors to become rods at the expense of cones. Furthermore, overexpression of Xenopus Nrl dramatically increased the number of lens fibers, whereas human Nrl did not, suggesting evolutionary divergence of function of the Nrl gene family. Misexpression of Nrl and Nr2e3 together were more effective than either transcription factor alone in directing precursors to the rod fate.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Basic-Leucine Zipper Transcription Factors / physiology*
  • Cell Differentiation / physiology*
  • DNA-Binding Proteins / physiology*
  • Eye Proteins / physiology*
  • Gene Expression Regulation, Developmental / physiology
  • Humans
  • Receptors, Cytoplasmic and Nuclear / physiology*
  • Receptors, Glutamate / physiology*
  • Retinal Rod Photoreceptor Cells / cytology*
  • Stem Cells / cytology*
  • Transcription Factors / physiology*
  • Xenopus Proteins / physiology*
  • Xenopus laevis

Substances

  • Basic-Leucine Zipper Transcription Factors
  • DNA-Binding Proteins
  • Eye Proteins
  • Nr2e3 protein, Xenopus
  • Receptors, Cytoplasmic and Nuclear
  • Receptors, Glutamate
  • Transcription Factors
  • Xenopus Proteins
  • nodal1 protein, Xenopus