Pausing by reverse transcriptase (RT) during retroviral replication increases the frequency of homologous strand transfer, nucleotide misincorporation, and non-templated nucleotide addition. Pausing frequency increases at sites of DNA damage or upon incorporation of nucleotide analogs with steric barriers. These lesions thus likely stimulate mutations leading to resistant viral strains that escape drug treatments or immune surveillance. To study the response of retroviral RTs to bulky 2' adducts, a ribozyme-catalyzed reaction was used to generate an RNA template strand containing a thiophosphate adduct at a specific 2'-hydroxyl located upstream from a polyadenosine sequence. Subsequent alkylation increased the size of the adduct. Polymerization readthrough efficiencies were compared for mature RTs derived from HIV-1 (p66/p51), AMV (p95/p63), MMLV (p80 monomer), and a truncated version of HIV-1 RT lacking the RNase H domain (p51/p51 homodimer). Readthrough at the 2' lesion was markedly greater for the p51/p51 homodimer of HIV-1 RT than for the other enzymes, suggesting that the presence of the RNase H domain increases the probability that the modified primer/template will encounter a barrier to translocation. Comparison to published structures suggests potential unfavorable interactions between the 2' adduct and W24, F61, I63, D76, and R78 in the fingers domain of the RT. We propose that the enhanced readthrough observed upon RNase H domain deletion alters the trajectory of the primer/template in this region that diminishes steric and electrostatic clash with these residues. The template also included a penta-adenosine sequence that induced pausing in the order MMLV > HIV-1 (p66/p51) > AMV ~ HIV-1 (p51/p51).