Recent studies have shown that cardiac stem cells (CSCs) from the adult mammalian heart can give rise to functional cardiomyocytes; however, the definite surface markers to identify a definitive single entity of CSCs and the molecular mechanisms regulating their growth are so far unknown. Here, we demonstrate a single-cell deposition analysis to isolate individually selected CSCs from adult murine hearts and investigate the signals required for their proliferation and survival. Clonally proliferated CSCs express stem cell antigen-1 (Sca-1) with embryonic stem (ES) cell-like and mesenchymal cell-like characteristics and are associated with telomerase reverse transcriptase (TERT). Using a transgene that expresses a GFP reporter under the control of the TERT promoter, we demonstrated that TERT(GFP)-positive fractions from the heart were enriched for cells expressing Sca-1. Knockdown of Sca-1 transcripts in CSCs led to retarded ex vivo expansion and apoptosis through Akt inactivation. We also show that ongoing CSC proliferation and survival after direct cell-grafting into ischemic myocardium require Sca-1 to upregulate the secreted paracrine effectors that augment neoangiogenesis and limit cardiac apoptosis. Thus, Sca-1 might be an essential component to promote CSC proliferation and survival to directly facilitate early engraftment, and might indirectly exert the effects on late cardiovascular differentiation after CSC transplantation.