High-resolution whole-body magnetic resonance imaging applications at 1.5 and 3 Tesla: a comparative study

Invest Radiol. 2007 Jun;42(6):449-59. doi: 10.1097/01.rli.0000262089.55618.18.

Abstract

Objectives: To analyze the impact of altered magnetic field properties on image quality and on potential artifacts when an established whole-body magnetic resonance imaging (WB-MRI) protocol at 1.5 Tesla (T) is migrated to 3 T.

Materials and methods: Fifteen volunteers underwent noncontrast magnetic resonance imaging (MRI) on 32-channel whole body-scanners at 1.5 and 3 T with the use of parallel acquisition techniques (PAT). Coronal T1-weighted TSE- and short tau inversion recovery (STIR)-sequences at 4 body levels including sagittal imaging of the whole spine were performed. Additional axial HASTE-imaging of lung and abdomen, T1-/T2-weighted-TSE- and EPI-sequences of the brain and T2-weighted respiratory-triggered imaging of the liver was acquired. Both data sets were compared by 2 independent readers in respect to artifacts and image quality using a 5-point scale. Regions of pronounced artifacts were defined.

Results: Overall image impression was both qualitatively rated as "good" at 1.5 and 3 T for T1-w-TSE- and STIR-imaging of the whole body and spine. At 1.5 T, significantly better quantitative values for overall image quality were found for WB-STIR, T2-w-TSE imaging of the liver and brain (Wilcoxon Mann-Whitney U Test; P < 0.05), overall rated as good at 3 T. Significantly higher dielectric effects at 3 T were affecting T1-w- and STIR-WB-MRI, and HASTE of the abdomen and better image homogeneity at 1.5 T was observed for T1-weighted-/STIR-WB-MRI and T1-w-TSE-imaging of the spine. Pulsation artifacts were significantly increased at 3 T for T1-w WB-MRI. Significantly higher susceptibility artifacts were found for GRE-sequences of the brain at 3 T. Motion artifacts, Gibbs-Ringing, and image distortion was not significantly different and showed slightly higher quantitative values at 3 T (except for HASTE imaging of the abdomen). Overall scan time was 45 minutes and 44 seconds at 1.5 T and 40 minutes and 28 seconds at 3 T at identical image resolution.

Conclusion: Three Tesla WB-MRI is feasible with good image quality comparable to 1.5 T. 3.0 T WB-MRI shows significantly more artifacts with a mild to moderate impact on image assessment. Therefore 1.5 T WB-MRI is the preferred image modality. Overall scan time at 3 T is reduced with the use of parallel imaging at a constant image resolution.

Publication types

  • Comparative Study

MeSH terms

  • Adult
  • Artifacts
  • Female
  • Humans
  • Magnetic Resonance Imaging / methods*
  • Male
  • Middle Aged
  • Statistics, Nonparametric
  • Whole Body Imaging*