Phosphonomethoxy nucleoside analogs of the thymine containing nucleoside reverse transcriptase inhibitors (NRTIs), 3'-azido-2',3'-dideoxythymidine (AZT), 2',3'-didehydro-2',3'-dideoxythymidine (d4T), and 2',3'-dideoxythymidine (ddT), were synthesized. The anti-HIV activity against wild-type and several major nucleoside-resistant strains of HIV-1 was evaluated together with the inhibition of wild-type HIV reverse transcriptase (RT). Phosphonomethoxy analog of d4T, 8 (d4TP), demonstrated antiviral activity with an EC(50) value of 26 microM, whereas, phosphonomethoxy analogs of ddT, 7 (ddTP), and AZT, 6 (AZTP), were both inactive at concentrations up to 200 microM. Bis-isopropyloxymethylcarbonyl (bisPOC) prodrugs improved the anti-HIV activity of 7 and 8 by >150-fold and 29-fold, respectively, allowing for antiviral resistance to be determined. The K65R RT mutant virus was more resistant to the bisPOC prodrugs of 7 and 8 than bisPOC PMPA (tenofovir DF) 1. However, bisPOC prodrug of 7 demonstrated superior resistance toward the RT virus containing multiple thymidine analog mutations (6TAMs) indicating that new phosphonate nucleoside analogs may be suitable for targeting clinically relevant nucleoside resistant HIV-1 strains.