Objective: The effects of cold cardioplegic arrest and reperfusion on human ventricular gene expression are unknown. We tested the hypothesis that intraoperative ischemia-reperfusion under conditions of blood cardioplegic arrest would induce a unique myocardial genomic profile indicative of a cardioprotective response.
Methods: Right ventricular samples were serially acquired during surgical repair of ventricular septal defect.
Results: Expression profiling revealed 3 patterns of gene expression: (1) increased expression above control levels within 1 hour of cardioplegic arrest, with further amplification during early reperfusion; (2) increased expression limited to the reperfusion phase; and (3) reduced expression during reperfusion. Functional annotation and network mapping of differentially expressed genes indicated activation of multiple signaling pathways regulated by phosphatidylinositide 3'-OH kinase convergent on cellular growth and reparative programs. Also observed was increased expression of genes regulating hemoglobin synthesis, suggesting a novel cardioprotective pathway evoked during ischemia-reperfusion.
Conclusion: Reversible myocardial ischemia-reperfusion during cardiac surgery is associated with an immediate genomic response that predicts a net cardioprotective phenotype.