The Lyme disease spirochaete, Borrelia burgdorferi, produces the LuxS enzyme both in vivo and in vitro; this enzyme catalyses the synthesis of homocysteine and 4,5-dihydroxy-2,3-pentanedione (DPD) from a by-product of methylation reactions. Unlike most bacteria, B. burgdorferi is unable to utilize homocysteine. However, DPD levels alter expression levels of a subset of B. burgdorferi proteins. The present studies demonstrate that a single B. burgdorferi operon encodes both of the enzymes responsible for synthesis of DPD, as well as the enzyme for production of the Lyme spirochaete's only activated-methyl donor and a probable phosphohydrolase. Evidence was found for only a single transcriptional promoter, located 5' of the first gene, which uses the housekeeping sigma(70) subunit for RNA polymerase holoenzyme function. All four genes are co-expressed, and mRNA levels are growth-rate dependent, being produced during the exponential phase. Thus, high metabolic activity is accompanied by increased cellular levels of the only known borrelial methyl donor, enhanced detoxification of methylation by-products, and increased production of DPD. Therefore, production of DPD is directly correlated with cellular metabolism levels, and may thereby function as an extracellular and/or intracellular signal of bacterial health.