Polyclonal B-cell activation is a feature of the early spleen cell response to blood-stage Plasmodium chabaudi malaria. Immunity to blood-stage malaria is guaranteed by the generation of B cells able to produce parasite-specific antibodies mainly from the immunoglobulin (Ig)G2a isotype. In the present study, we characterized the spleen B-cell compartment during blood-stage P. chabaudi infection. The numbers of B220(+) and B220(LOW) CD138(+) (plasma) cells increased sharply between days 4 and 7 post-infection (p.i.). At this time B220(+) cells expressed surface (s)IgM, but nearly all B220(LOW) CD138(+) cells showed concomitantly intracellular (i)IgM and IgG2a. Both follicular and marginal zone B cells were activated expressing high amounts of CD69. At day 40 p.i., B220(LOW) CD138(+) cell population was still increased but, differently from acute infection, 61.1% of these cells were positive for iIgG2a while only 14.2% expressed iIgM. Moreover, at days 20 and 40 p.i., 29.2% and 13.0% of B220(+) cells expressed sIgG2a, respectively. According to cell size and expression of CD80, CD86, CD11b, CD44 and CD38, B220(+) sIgG2a(+) cells had a phenotype characteristic of activated/memory B cells. Furthermore, 14.1% of B220(+) sIgG2a(+) cells at day 30 p.i. expressed a marginal zone B-cell phenotype. Importantly, B cells from 40-day-infected mice were very efficient in presenting parasite antigens leading to proliferation of both CD4(+) and CD8(+) cells. Our results contribute for understanding the dynamics of B cells during P. chabaudi infection, underlying the mechanisms of antigen presentation and antibody production, which are essential for the acquisition of protective immunity against malaria.