The transition of human dendritic cells (DCs) from the immature to the mature phenotype is characterized by an increased density of MHC class II (MHCII) molecules on the plasma membrane, a key requirement of their competence as professional antigen presenting cells (APCs). MHCII molecules on the cell surface derive from newly synthesized as well as from preexisting proteins. So far, all the studies done on DCs during maturation, to establish the relative contribution of newly synthesized MHCII molecules to the cell surface pool did not produced a clear, unified scenario. We report that, in human DCs stimulated ex vivo with LPS, the changes in the RNA accumulation specific for at least two MHCII genes (HLA-DRA and HLA-DQA1) due to transcriptional upregulation, is associated with the active translation at high rate of these transcripts. Our finding reveals that, across the 24h of the maturation process in human DCs, newly synthesized MHCII proteins are supplied to the APCs cell surface pool.