We hypothesized that over-expressing the E3 ligase, parkin, whose functional loss leads to Parkinson's disease, in the nigrostriatal tract might be protective in the unilateral 6-hydroxydopamine (6-OHDA) rat lesion model. Recombinant adeno-associated virus (rAAV) encoding human parkin or green fluorescent protein (GFP) was injected into the rat substantia nigra 6 weeks prior to a four-site striatal 6-OHDA lesion. Vector-mediated parkin over-expression significantly ameliorated motor deficits as measured by amphetamine-induced rotational behavior and spontaneous behavior in the cylinder test but forelimb akinesia as assessed by the stepping test was unaffected. rAAV-mediated human parkin was expressed in the nigrostriatal tract, the substantia pars reticulata, and the subthalamic nucleus. However, in lesioned animals, there was no difference between nigral parkin and GFP-transduction on lesion-induced striatal tyrosine hydroxylase (TH) innervation or nigral TH positive surviving neurons. A second lesion experiment was performed to determine if striatal dopamine (DA) neurotransmission was enhanced as measured biochemically. In this second group of parkin and GFP treated rats, behavioral improvement was again observed. In addition, striatal TH and DA levels were slightly increased in the parkin-transduced group. In a third experiment, we evaluated parkin and GFP transduced rats 6 weeks after vector injection without DA depletion. When challenged with amphetamine, parkin treated rats tended to display asymmetries biased away from the treated hemisphere. Nigral parkin over-expression induced increases in both striatal TH and DA levels. Therefore, while parkin over-expression exerted no protective effect on the nigrostriatal DA system, parkin appeared to enhance the efficiency of nigrostriatal DA transmission in intact nigral DA neurons likely due to the observed increases in TH.