We investigated whether the signal mechanism for relaxation may be affected by inflammation of the cat esophagus. Acute esophagitis was induced by perfusion with 0.1N HCI at a rate of 1 mL/min for 45 min over three consecutive days. We then isolated esophageal smooth muscle cells by enzymatic digestion with collagenase. We pre-contracted the isolated smooth cells with acetylcholine (ACh) (10(-5) M) and compared the agonist-induced relaxation of pre-con tracted normal cells with those of esophagitic cells. Vasoactive intestinal polypeptide (VIP) caused a dose-dependent relaxation in normal cells, and this curve was down shifted in esophagitic cells. Sodium nitroprusside (SNP) or SIN-1 (NO donor) produced dose-dependent relaxation in normal cells, which was not affected by esophagitis. 8-Br-cGMP (a cGMP ana log) also induced dose-dependent relaxation to a similar extent in both normal and esoph agitic cells. Forskolin (a cAMP activator) or db-cAMP (a cAMP analog) produced dose-dependent relaxation in normal cells, and this relaxation curve was down shifted in esoph agitic cells. Western blotting was used to determine what subtype of adenylyl cyclase was involved in the cAMP pathway. Western blot analysis of homogenates derived from esophageal smooth muscle using antibodies against adenylyl cyclase types II, III, IV and V/VI revealed the presence of type V and/or type VI only. This result suggests that relaxation via a cAMP-dependent pathway rather than a cGMP dependent-pathway is down regulated in cat acute esophagitis. This subsensitivity of the cAMP related pathway may be related to the activ ity of adenylyl cyclase V/VI.