The improvement in conformal radiotherapy techniques with steep dose gradients has allowed for the delivery of higher doses to a tumor volume while maintaining the sparing of surrounding normal tissue. In this situation, verification of patient setup and evaluation of internal organ motion just prior to radiation delivery is a crucial step. To this end, several volumetric image-guided techniques have been developed for patient localization, such as the Siemens MVision mega-voltage cone beam CT (MV-CBCT) system. In this work, the commissioning and clinical implementation of the MVision system is presented. The geometry and gain calibration procedures for the system are described, and guidelines for quality assurance procedures are provided. Different MV-CBCT clinical protocols, ranging from daily to weekly image-guidance, which includes image acquisition, reconstruction, registration with planning CT, and treatment couch offsets corrections, were commissioned. The image quality characteristics of the MVision system were measured and assessed qualitatively and quantitatively, including the image noise and uniformity, low-contrast resolution, and spatial resolution. Furthermore, the image reconstruction and registration software was evaluated. Data show that a 2 cm large object with 1% electron density contrast can be detected with the MVision system with 10 cGy at isocenter and that the registration software is accurate within 2 mm in the anterior-posterior, left-right, and superior-inferior directions.