Multiecho reconstruction for simultaneous water-fat decomposition and T2* estimation

J Magn Reson Imaging. 2007 Oct;26(4):1153-61. doi: 10.1002/jmri.21090.

Abstract

Purpose: To describe and demonstrate the feasibility of a novel multiecho reconstruction technique that achieves simultaneous water-fat decomposition and T2* estimation. The method removes interference of water-fat separation with iron-induced T2* effects and therefore has potential for the simultaneous characterization of hepatic steatosis (fatty infiltration) and iron overload.

Materials and methods: The algorithm called "T2*-IDEAL" is based on the IDEAL water-fat decomposition method. A novel "complex field map" construct is used to estimate both R2* (1/T2*) and local B(0) field inhomogeneities using an iterative least-squares estimation method. Water and fat are then decomposed from source images that are corrected for both T2* and B(0) field inhomogeneity.

Results: It was found that a six-echo multiecho acquisition using the shortest possible echo times achieves an excellent balance of short scan and reliable R2* measurement. Phantom experiments demonstrate the feasibility with high accuracy in R2* measurement. Promising preliminary in vivo results are also shown.

Conclusion: The T2*-IDEAL technique has potential applications in imaging of diffuse liver disease for evaluation of both hepatic steatosis and iron overload in a single breath-hold.

MeSH terms

  • Adipose Tissue / metabolism*
  • Algorithms
  • Echo-Planar Imaging / methods*
  • Fatty Liver / pathology*
  • Hemochromatosis / metabolism
  • Hemochromatosis / pathology
  • Humans
  • Image Processing, Computer-Assisted / methods
  • Iron / metabolism*
  • Least-Squares Analysis
  • Phantoms, Imaging
  • Reproducibility of Results
  • Water / chemistry*

Substances

  • Water
  • Iron