To afford the greatest possible immune protection, candidate human immunodeficiency virus (HIV) vaccines must generate diverse and long-lasting CD8(+) T lymphocyte responses. In the present study, we evaluate T-cell receptor Vbeta (variable region beta) gene usage and a CDR3 (complementarity-determining region 3) sequence to assess the clonality of epitope-specific CD8(+) T lymphocytes generated in rhesus monkeys following vaccination and simian-human immunodeficiency virus (SHIV) challenge. We found that vaccine-elicited epitope-specific CD8(+) T lymphocytes have a clonal diversity comparable to those cells generated in response to SHIV infection. Moreover, we show that the clonal diversity of vaccine-elicited CD8(+) T-lymphocyte responses is dictated by the epitope sequence and is not affected by the mode of antigen delivery to the immune system. Clonal CD8(+) T-lymphocyte populations persisted following boosting with different vectors, and these clonal cell populations could be detected for as long as 4 years after SHIV challenge. Finally, we show that the breadth of these epitope-specific T lymphocytes transiently focuses in response to intense SHIV replication. These observations demonstrate the importance of the initial immune response to SHIV, induced by vaccination or generated during primary infection, in determining the clonal diversity of cell-mediated immune responses and highlight the focusing of this clonal diversity in the setting of high viral loads. Circumventing this restricted CD8(+) T-lymphocyte clonal diversity may present a significant challenge in the development of an effective HIV vaccine strategy.