Cellular mismatch and base-excision repair machineries have been shown to be involved in Epstein-Barr Virus (EBV) lytic DNA replication. We report here that nucleotide-excision repair (NER) may also play an important role in EBV lytic DNA replication. Firstly, the EBV BGLF4 kinase interacts with xeroderma pigmentosum C (XPC), the critical DNA damage-recognition factor of NER, in yeast and in vitro, as demonstrated by yeast two-hybrid and glutathione S-transferase pull-down assays. Simultaneously, XPC was shown, by indirect immunofluorescence and co-immunoprecipitation assays, to interact and colocalize with BGLF4 in EBV-positive NA cells undergoing lytic viral replication. In addition, the efficiency of EBV DNA replication was reduced about 30-40 % by an XPC small interfering RNA. Expression of BGLF4 enhances cellular DNA-repair activity in p53-defective H1299/bcl2 cells in a host-cell reactivation assay. This enhancement was not observed in the XPC-mutant cell line XP4PA-SV unless complemented by ectopic XPC, suggesting that BGLF4 may stimulate DNA repair in an XPC-dependent manner. Overall, we suggest that the interaction of BGLF4 and XPC may be involved in DNA replication and repair and thereby enhance the efficiency of viral DNA replication.