The respiratory syncytial virus (RSV) is a serious pediatric pathogen for which there is currently no clinically approved vaccine. This report describes the design and testing of a new RSV vaccine construct (rSV-RSV-F), created by the recombination of an RSV F sequence with the murine parainfluenza virus-type 1 (Sendai virus, SV) genome. SV was selected as the vaccine backbone for this study, because it has previously been shown to elicit high-magnitude, durable immune activities in animal studies and has advanced to human safety trials as a xenogenic vaccine for human parainfluenza virus-type 1 (hPIV-1). Cells infected with the recombinant SV expressed RSV F protein, but F was not incorporated into progeny SV virions. When cotton rats were inoculated with the vaccine, high-titer RSV-binding and neutralizing antibodies as well as interferon-gamma-producing T-cells were induced. Most striking was the protection against intra-nasal RSV challenge conferred by the vaccine. The rSV-RSV-F construct was also tested as a mixture with a second SV construct expressing the RSV G protein, but no clear advantage was demonstrated by combining the two vaccines. As a final analysis, the efficacy of the rSV-RSV-F vaccine was tested against an array of RSV isolates. Results showed that neutralizing and protective responses were effective against RSV isolates of both A and B subtypes. Together, experimental results encourage promotion of this recombinant SV construct as a vaccine candidate for the prevention of RSV in humans.