Obtaining sufficient transgenic cells via selective cultivation of genetically manipulated somatic cells is difficult due to the limited number of cell divisions. Additionally, if irreversible mutations in a cell's chromosomes occur during selective cultivation and the cell is used as the nuclear donor, somatic cell nuclear transfer (SCNT) embryos often exhibit abnormal development. On the other hand, a SCNT method in which fetal cells derived from SCNT embryos are used as the nuclear donor (recloning method) is an effective technique for obtaining large quantities of transgenic cells. In this study, we compared the in vivo development rate of SCNT embryos produced from porcine alpha1-3 galactosyltransferase gene knockout (GTKO) cells by a recloning method with that of SCNT embryos produced without recloning from porcine GTKO cells (direct method). In the direct method, 557 and 462 cloned embryos were produced using two types of activation methods, the two-step activation (TA) method and the delayed activation (DA) method, and then transferred into 6 and 4 recipients, respectively, but no piglets were born from these recipients. In the recloning method, 956 and 1038 cloned embryos were produced using the TA and DA methods, respectively, and then transferred to 8 and 7 recipients, respectively. Two piglets were born from one recipient in the TA group and 6 piglets were born from 3 recipients in the DA group. This report indicates that the recloning method improved the developmental capacity of SCNT embryos reconstructed with gene-targeted somatic cells.