There is a paucity of studies on the effect of intrauterine conditions on subsequent progeny performance in dairy cows. Using a large national data set on Irish Holstein-Friesian dairy cows, the objective of this study was to determine if intrauterine conditions, quantified by a maternal genetic variance component, significantly affected milk production, age at first calving, calving interval, somatic cell score (natural logarithm of somatic cell count) and survival in first-, second-, and third-parity female offspring. Maternal genetic variance for each trait in each parity was estimated in a linear mixed model which included, other than fixed effects, direct additive genetic, maternal genetic, cytoplasmic and permanent environmental effect of the dam, and residual component. A covariance was also estimated between the direct additive and maternal genetic components where possible. Because calves in Irish dairy herds are separated from dams at birth, a significant maternal genetic variance (with all other random effects in the model) indicates a prepartum maternal effect. A significant maternal genetic variance was estimated for 305-d milk yield in first and third lactation, somatic cell score in first lactation, and survival to second lactation from 188,144 lactations on 80,881 animals. Where estimated, a negative correlation existed between the direct additive and maternal genetic components. Regression of maternal mixed model solutions on dam milk production at different stages relative to conception revealed that greater milk yield preconception and during gestation was associated with reduced survival and milk yield and greater somatic cell count in the progeny. This study suggests that offspring survival and performance are affected by prepartum conditions that offspring experience as an oocyte, embryo, or fetus, one of which is mediated through milk production (or factors related to milk production) of the dam.